miércoles, 8 de agosto de 2012

SEGUNDO PATRÓN


                                                                        CRONOS


1 segundo es igual al tiempo que le toma al átomo de cesio-133 cumplir 9 192 631 770 ciclos o periodos de la radiación asociada a una transición particular. O   es el intervalo de tiempo  durante el cual ocurren  9 192 631 770  oscilaciones de la onda electromagnética  que corresponde a la transición del átomo de cesio -133. Esta es una definición atómica muy precisa y confiable. (Wikipedia).


                                                                            CRONOS

Origen etimológico de segundo

La palabra segundo proviene del latín sequire (seguir); sin embargo, su uso para denominar a la medida de tiempo es similar al origen del término minuto. Este proviene del latín minuta (parte pequeña); es decir, una «minuta de hora» es una parte pequeña de la hora. La hora se dividía en 60 fracciones a las que se denominaba pars minuta prima (primera parte pequeña), a su vez estas se dividían de nuevo en 60 partes llamadas pars minuta secunda (segunda parte pequeña).


Uso correcto del símbolo en textos


En textos en español, es frecuente encontrar abreviaturas no oficiales para el segundo, tales como seg. o sg. Nótese que no se debe utilizar abreviaturas para las unidades de tiempo: el símbolo correcto según el Sistema Internacional de Unidades es «s». Igualmente, debe dejarse un espacio entre el número y el símbolo y no debe añadirse un punto tras el símbolo (excepto al final de una oración).

  • Ejemplos de uso incorrecto: 13 seg13 seg.13 sg13″ (en el SI, el símbolo ″ se refiere a segundos de arco)
  • El uso correcto para estos casos es «13 s»


Reloj atómico


Un reloj atómico es un tipo de reloj que para alimentar su contador utiliza una frecuencia de resonancia atómica normal. Los primeros relojes atómicos tomaban su referencia de un máser.1​ Las mejores referencias atómicas de frecuencia (o relojes) modernas se basan en físicas más avanzadas, que involucran átomos fríos y fuentes atómicas. Las agencias de normas nacionales mantienen una exactitud de 10-9 segundos por día2​ y una precisión igual a la frecuencia del transmisor de la radio que bombea el máser.

Los relojes atómicos mantienen una escala de tiempo continua y estable, el Tiempo Atómico Internacional (TAI). Para uso cotidiano se difunde otra escala cronológica: el Tiempo Universal Coordinado (UTC). El UTC deriva del TAI, pero se sincroniza usando segundos de intercalación con el Tiempo Universal (UT1), el cual se basa en la transición día–noche según las observaciones astronómicas.

El primero se construyó en el Willard Frank Libby, de los EE. UU., en 1949, basándose en ideas acerca de un fenómeno extremadamente regular: la resonancia magnética molecular y atómica, de Isidor Isaac RabiPremio Nobel de Física,3​ aunque la precisión conseguida mediante amoníaco —molécula utilizada por el prototipo del National Institute of Standards and Technology (NIST)— no era muy superior a los estándares de la época, basados en osciladores de cuarzo.

Hoy los mejores patrones de frecuencia atómicos se basan en las propiedades físicas de las fuentes de emisión de cesio. El primer reloj atómico de cesio se construyó en 1955, en el National Physical Laboratory (NPL), en Inglaterra. Sus creadores fueron Louis Essen y John V.L Parry.4

En el año 1967 los relojes atómicos basados en cesio habían conseguido fiabilidad suficiente como para que la Oficina Internacional de Pesas y Medidas eligiera la frecuencia de vibración atómica de los dispositivos creados y perfeccionados por Essen como nuevo patrón base para la definición de la unidad de tiempo físico. Según este patrón, un segundo se corresponde con 9 192 631 770 ciclos de la radiación asociada a la transición hiperfina desde el estado de reposo del isótopo de cesio 133: (133Cs).

La precisión alcanzada con este tipo de reloj atómico es tan elevada que admite únicamente un error de un segundo en 30 000 000 años. El reloj más preciso del mundo se diseña en el Observatorio de París, donde los actuales relojes atómicos tardarían 52 millones de años para desfasarse un segundo. El nuevo objetivo de la investigación francesa es aumentar ese plazo a 32 mil millones de años. El estándar actual de los relojes atómicos en activo permite el atraso de un segundo cada 3700 millones de años (NIST).



                                                         Reloj atómico de cesio



Aplicaciones

Los relojes atómicos se utilizan para generar las frecuencias estándar. Se instalan en los sitios de señales de tiempo, LORAN-C, y transmisores de navegación Alfa[cita requerida] También se han instalado en algunas estaciones de radiodifusión de ondas larga y media, para entregar frecuencias de transmisión muy precisas, que también pueden funcionar como frecuencias estándar. [cita requerida]

Además los relojes atómicos se utilizan en interferometría de línea de base larga en radioastronomía.

Los relojes atómicos constituyen la base del sistema de navegación GPS. La hora del reloj maestro GPS es una media ponderada de los relojes atómicos ubicados en las estaciones terrestres y de los colocados en los satélites GPS. Cada uno de ellos está dotado de varios relojes atómicos.

16 comentarios:

  1. me sirvio mucho para mi tarea de fisica

    ResponderEliminar
  2. me sirvio mucho para mi tarea de fisica

    ResponderEliminar
  3. muy buena informacion :), me sirvio mucho.

    ResponderEliminar
  4. THANKS MUY BUENA INFORMACIÓN, ME AYUDO PARA MECATRONICA

    ResponderEliminar
  5. me ayudo para mi tarea de fsica gracias

    ResponderEliminar
  6. oye amigo es muy poca infomacion yo digo

    ResponderEliminar
  7. Gracias me ayudo mucho para poder completar mi tarea de fisica

    ResponderEliminar
  8. Ayuda de que está hecho el segundo patrón

    ResponderEliminar