domingo, 19 de agosto de 2018

CLASIFICACION DE LA FISICA

La física se clasifica en dos grandes ramas, la física clásica y la física moderna.
La física se constituye en una de las áreas del saber perteneciente a las ciencias exactas o de la naturaleza, ya que la misma se establece como objeto de estudio, la materia, la energía y los cambios que se pueden establecer en la misma por la intervención de esta.
De igual forma tiene por vital importancia el estudio de dos aspectos abstractos, cuales son el tiempo y el espacio, resultando factores que infieren en la ocurrencia de los fenómenos.
A) FÍSICA CLÁSICA
 Estudia  los fenómenos que acontecen a una velocidad inferior a la magnitud de la velocidad que corre la luz. Su principal exponente fue Isaac Newton.
1.- Mecánica.
Parte de la física que estudia el movimiento y el equilibrio de los cuerpos, así como de las fuerzas que los producen.

2.- Termoloía.

La termología indica generalmente el estudio de la física inherente en la naturaleza y de los efectos del calor.

3.- Ondas

Parte de la Física que se encarga del estudio de la naturaleza de las ondas electromagneticas y su propagación.

4.- Óptica

Es la rama de la física que toma la luz como una onda y explica algunos fenómenos que no se podrían explicar tomando la luz como un rayo.

5.- Electromagnetismo



Es una rama de la física que estudia y unifica los fenómenos eléctricos y magnéticos en una sola teoría, cuyos fundamentos fueron presentados por Michael Faraday y formulados por primera vez de modo completo por James Clerk Maxwell



B) FISICA MODERNA

Estudia fenómenos relacionados con velocidades iguales o cercanas a la luz.
1.- Mécanica Cuántica
Es una disciplina de la física encargada de brindar una descripción fundamental de la naturaleza a escalas espaciales pequeñas. Fueron muchos hombre de ciencia que contribuyeron a esta noble causa, entre los que podemos contar a Luis de Broglie, Werner Heisenberg , Max Born,Erwin Schrödinger,Max Planck, Max Born entre otros.
2.- Mécanica Relativista
La mecánica relativista o teoría de la relatividad. Comprende: La Teoría de la relatividad especial, que describe adecuadamente el comportamiento clásico de los cuerpos que se mueven a grandes velocidades en un espacio-tiempo plano (no-curvado).
Su principal exponente fue Albert Einstein.





domingo, 12 de agosto de 2018

LAS FUERZAS DE LA NATURALEZA O FUERZAS FUNDAMENTALES DEL UNIVERSO.

La fuerza de interacción más familiar es la gravitación, el hecho de que los cuerpos caigan al suelo es ya parte íntegra de nuestra experiencia común. Pero la gravitación es sólo una de las cuatro fuerzas fundamentales de la naturaleza.




GRAVITACIÓN
Todo cuerpo masivo atrae gravitacionalmente a otro. La Tierra nos atrae y nosotros atraemos a la Tierra (aunque la fuerza que ejerce nuestro cuerpo es prácticamente imperceptible y, en la práctica, sólo se nota la fuerza de atracción de la Tierra).
En el siglo XVII el gran físico inglés Isaac Newton descubrió que la gravitación es un fenómeno universal. Según una famosa leyenda, Newton estaba un día sentado debajo de un manzano, cavilando con respecto a la fuerza que mantiene unida la Luna a la Tierra, cuando vio caer una manzana. Este suceso le dio la clave para descubrir que la fuerza de gravedad, la misma que hace caer la manzana, es también la que retiene a la Luna en órbita. Descubrió así el principio de la gravitación universal.
Por extraño que nos parezca en la actualidad, hasta antes de Newton se pensaba que la gravitación era un fenómeno exclusivo de la Tierra, como si nuestro planeta fuese un sitio muy especial en el cosmos. Así, el filósofo griego Aristóteles —quien vivió en el siglo IV a.c. y llegó a ser considerado la máxima autoridad científica en la Edad Media— distinguía claramente entre los fenómenos terrestres y los celestes. Para Aristóteles la gravitación era un fenómeno puramente terrestre, que no podía influir en los cuerpos celestes, pues éstos estaban hechos de una sustancia muy distinta a la materia común que se encuentra en la Tierra. Incluso el mismo Galileo, uno de los fundadores de la ciencia física, estudió detenidamente la caída de los cuerpos pero nunca sospechó que hubiera una relación entre este fenómeno y el movimiento de los planetas.
La gravitación universal, descubierta por Newton, implica que la Tierra no sólo atrae a los objetos que están en su superficie, sino también a la Luna y a cualquier cuerpo en su cercanía. Además, el Sol atrae a la Tierra y a todos los demás planetas, las estrellas se atraen entre sí, las galaxias también, y así toda la materia en el Universo.
Pero además Newton descubrió que la fuerza de gravedad obedece una ley muy sencilla. La fuerza gravitacional entre dos cuerpos es directamente proporcional a las masas de los cuerpos e inversamente proporcional al cuadrado de la distancia que los separa. En términos matemáticos, la fórmula para la fuerza se escribe: 
donde F es la fuerza, M1 y M2 son las masas de cada uno de los cuerpos, R es la distancia que los separa y es una constante de proporcionalidad, la llamada constante gravitacional o de Newton, cuyo valor determina la intensidad de la interacción gravitacional. Se ha determinado experimentalmente que G vale 6.672 X 10-11 m 3/kgs2. Esto equivale a decir que dos masas de un kilogramo cada una colocadas a una distancia de un metro se atraen con una fuerza de 6.672 X 10-11 newtons.11[Nota 11]
Los planetas se mantienen unidos al Sol en órbitas estables por el equilibrio de dos fuerzas: la atracción gravitacional de ese astro y la fuerza centrífuga debida al movimiento circular. La fuerza centrífuga no se debe a una interacción de la materia, sino a la tendencia que tienen los cuerpos a mantener su movimiento en línea recta (esta fuerza se manifiesta, por ejemplo, en un automóvil cuando toma una curva: los pasajeros sienten una fuerza que los empuja hacia la parte exterior de la curva ). El gran éxito de Newton fue encontrar la manera de calcular con extrema precisión la trayectoria de los planetas, o de cualquier cuerpo en general, a partir de ecuaciones matemáticas que describen la fuerza aplicada en ellas.
En resumen, la gravitación es el cemento del Universo. Así como los planetas se mantienen pegados al Sol, las estrellas se atraen entre sí y forman enormes conglomerados que son las galaxias. Las estrellas en una galaxia giran alrededor del centro de ésta y, a la vez, son atraídas gravitacionalmente al centro de la galaxia. De esta manera se mantienen unidas.
Todo se explicaba a la perfección en el esquema teórico desarrollado por Newton. El único pedazo que faltaba en el rompecabezas era la naturaleza de la fuerza de gravitación. En efecto ¿qué es lo que produce realmente la atracción gravitacional? Si jalamos una piedra con una cuerda, la atracción se da por medio de la cuerda; si soplamos para empujar una pluma, la fuerza de interacción se da mediante el aire. Toda transmisión implica un medio: el sonido se transmite por medio del aire, la energía eléctrica por medio de cables, el calor por cuerpos conductores, etc. ¿Qué medio transmite la gravitación? ¿Cómo "sabe" la Luna que la Tierra está ahí y la atrae? ¿Cuál es el origen de esa "acción a distancia"?
Newton nunca estuvo enteramente satisfecho de su obra, pues no tenía una respuesta a las anteriores preguntas. Como una solución provisional propuso que el espacio esta totalmente lleno de una sustancia invisible e impalpable, el éter, que permea todos los cuerpos materiales y sirve para transmitir, de algún modo aún desconocido, la atracción gravitacional. La misteriosa "acción a distancia" cuya naturaleza todavía desconocía, se ejercería mediante el éter. Empero, el problema habría de perdurar mucho tiempo en la física.
La física de Newton permaneció incólume durante más de dos siglos. Pero a principios del siglo XX comenzaron a aparecer nuevos aspectos del mundo que ya no correspondían con el modelo clásico. Para dar un nuevo paso y comprender la gravitación se necesitaba una nueva teoría física que relevara la mecánica de Newton en los nuevos dominios del Universo que surgían. Afortunadamente, cerca de 1915 Albert Einstein había elaborado su teoría de la gravitación, también conocida como teoría de la relatividad general. 12[Nota 12]
De acuerdo con Einstein el espacio y el tiempo no son conceptos independientes, sino que están estrechamente vinculados y forman un espacio-tiempo de cuatro dimensiones, en el que el tiempo es la cuarta dimensión.
Expliquemos este concepto: nuestro espacio es de tres dimensiones, lo cual quiere decir sencillamente que todos los objetos materiales tienen altura, anchura y profundidad. Éste es un hecho muy evidente, pero no olvidemos que también existen espacios de una o dos dimensiones. La superficie de una hoja de papel, por ejemplo, es un espacio de dos dimensiones; un dibujo sólo tiene altura y anchura. Del mismo modo, una línea es un espacio de una sola dimensión.
En el siglo pasado, algunos matemáticos como G. F. B. Riemmann se dieron cuenta de que es posible concebir espacios de más de tres dimensiones con leyes geométricas perfectamente congruentes. Esto parecía una simple especulación de matemáticos hasta que, a principios de este siglo, surgió la teoría de la relatividad que revolucionó por completo toda nuestra visión del Universo.
Para explicar la gravitación Einstein postuló que la fuerza gravitacional se debe a una curvatura del espacio-tiempo. Así como una piedra pesada deforma una lona de tela y cualquier canica que se mueva sobre esa lona sigue una trayectoria curva, el Sol deforma el espacio-tiempo de cuatro dimensiones a su alrededor y los planetas se mueven siguiendo esa curvatura. En particular, una de las consecuencias más interesantes de la teoría de la relatividad es que el tiempo transcurre más lentamente donde la fuerza gravitacional es mayor.
Con la relatividad general, el problema de la acción a distancia fue resuelto a favor de un nuevo concepto: la geometría del espacio-tiempo. La física se redujo a geometría.




ELECTROMAGNETISMO
Otras fuerzas, bastante comunes en nuestra experiencia diaria —aunque no tanto como la gravedad—, son las fuerzas eléctricas y magnéticas. Los griegos se habían dado cuenta que al frotar un pedazo de ámbar (electros en griego) con una tela, el ámbar adquiría la propiedad de atraer pequeños pedazos de papel (el experimento se puede repetir con plástico en lugar de ámbar). Varios siglos después Charles-Augustin Coulomb estudio de modo más sistemático el fenómeno de la electricidad y descubrió que dos cargas eléctricas se atraen o se repelen con una fuerza inversamente proporcional al cuadrado de la distancia que los separa, tal como la fuerza gravitacional. Pero, a diferencia de la gravitación que siempre es atractiva, la fuerza eléctrica puede ser tanto repulsiva como atractiva, según si las cargas son del mismo signo o de signo contrario.
También se conocían desde la antigüedad los imanes, pedazos de hierro con la curiosa propiedad de atraer los objetos de hierro, y también de atraerse o repelerse entre sí al igual que las cargas eléctricas. Un imán posee dos polos, norte y sur; pero si se parte un imán por la mitad no se aíslan los polos, sino que se obtienen dos nuevos imanes con un par de polos cada uno: ésta es la diferencia esencial con la fuerza eléctrica, ya que no se puede tener un polo aislado, que equivaldría a una "carga magnética".
La electricidad y el magnetismo empezaron a cobrar importancia en el siglo XIX,. cuando Europa vivía en plena revolución industrial gracias a la invención de la máquina de vapor. En las ciencias físicas, Laplace y otros notables científicos habían logrado plasmar la mecánica de Newton en un lenguaje matemático que permitía su aplicación a problemas prácticos . La importancia de las máquinas de vapor, a su vez, propició la creación de una nueva rama de la física, la termodinámica, que estudia el calor y la propiedades térmicas de la materia.
Hasta esa época, electricidad y magnetismo parecían ser dos clases de fenómenos sin relación entre sí . Pero la invención de las pilas eléctricas permitió experimentar con las corrientes eléctricas y los imanes. Fue así como H. C. Oersted descubrió que una corriente eléctrica influye sobre un imán colocado cerca de ella, y A. M. Ampère demostró que ello se debe a que una corriente produce una fuerza magnética a su alrededor. Finalmente, en 1831 Faraday descubrió que se genera una corriente eléctrica en un alambre conductor cuando éste se mueve junto a un imán. Pero los imanes y las pilas eléctricas servían, cuando mucho, para hacer actos de magia y sólo contados se interesaban en ellos.
Medio siglo después, Tomás Edison tuvo la idea de utilizar el descubrimiento de Faraday para generar corriente eléctrica y distribuirla por medio de cables por la ciudad de Nueva York. La primera planta eléctrica de la historia fue inaugurada en 1881. Consistía en enormes turbinas de vapor que hacían girar grandes bobinas de alambre conductor alrededor de imanes. Debido al efecto Faraday, se generaba una corriente eléctrica que se transmitía por toda la ciudad. La energía térmica se convertía, así, en energía eléctrica. Pocos meses después se inauguró en Wisconsin la primera planta hidroeléctrica, en la que el agua de un río hacía girar las bobinas para producir el mismo efecto.
Toda la electricidad que consumimos hoy en día se genera gracias al efecto Faraday. Lo único que varía es el mecanismo utilizado para hacer girar una bobina alrededor de un imán; este mecanismo puede ser el flujo de agua en una presa, el funcionamiento de un motor de combustión de petróleo, la presión del vapor de agua calentada por el uranio en una planta nuclear, etcétera.
Pero regresemos a Faraday. El problema de la acción a distancia que Newton había planteado por primera vez seguía aún más vigente con el estudio de los fenómenos eléctricos y magnéticos. Para explicar como un imán influye sobre otro, Faraday ideó el concepto de línea de fuerza. De acuerdo con esta interpretación, de una carga eléctrica o un imán surgen líneas de fuerza invisibles pero perfectamente reales, que llenan todo el espacio a su alrededor (Figura 4). Estas líneas guían en cierta manera el movimiento de cargas eléctricas o magnéticas que se encuentran cerca. El concepto es más intuitivo que el de la acción a distancia. 


Figura 4. Las líneas de fuerza de Faraday alrededor de una carga eléctrica y de un imán. 

Figura 5. Masa faltante de los núcleos atómicos en función del número atómico (número de protones en el núcleo).

INTERACCIONES DÉBILES
El repertorio de fuerzas de la naturaleza no termina con la gravitación, el electromagnetismo y las fuerzas nucleares. En los años treinta, los físicos que estudiaban las radiaciones emitidas por los átomos se dieron cuenta de que en algunos casos, los núcleos atómicos eliminan electrones; a este proceso lo llamaron radiación beta. Pronto se descubrió que la radiación beta se debe a que un neutrón en el núcleo se transforma en un protón y un electrón, y este último se escapa a gran velocidad del núcleo.
Pero, al medir las propiedades del electrón que se escapaba, los físicos descubrieron que le faltaba algo de energía. Al principio hubo cierta alarma, pues parecía que la energía no se conservaba en contra del principio bien establecido de que la cantidad total de energía y masa implicada en cualquier proceso físico no se crea ni se destruye. Para solucionar este problema propusieron que una nueva clase de partícula se lleva la energía faltante, una partícula sin carga, totalmente invisible e inmune a las fuerzas eléctricas y magnéticas. Enrico Fermi llamó neutrino a tal partícula (que en italiano significa "neutroncito") para distinguirlo del neutrón, y ese es el nombre que se le ha quedado.
La interacción del neutrino con la materia no es enteramente nula, pero es millones de veces menos intensa que la de una partícula "normal ". Es la cuarta fuerza de la naturaleza y se le llama interacción débil. Su alcance es extremadamente corto, semejante al de las fuerzas nucleares, razón por la que no forma parte de nuestra experiencia cotidiana. En promedio, se necesitarían billones de kilómetros de plomo para absorber un neutrino (en comparación, una lámina delgada de metal detiene cualquier fotón de luz). Si tuviéramos ojos sensible a los neutrinos podríamos "ver" el centro de la Tierra o del Sol... Y es que la luz, siendo un fenómeno electromagnético, interactúa electromagnéticamente con los átomos. Como señalamos antes, la "dureza" de un átomo se debe casi exclusivamente al campo electromagnético que posee. Para el neutrino que es insensible a ese campo, el átomo es un cuerpo casi inexistente.
La existencia de los neutrinos se ha establecido plenamente hoy en día y sus propiedades son bien conocidas. La más interesante es que el neutrino no tiene masa, o, si la tiene, es extremadamente pequeña. Si la masa del neutrino es estrictamente cero, entonces esta partícula, al igual que el fotón, tiene que moverse siempre a la velocidad de la luz. Tal parece que el neutrino comparte esa propiedad con el fotón. Así, un neutrino nunca podría estar en reposo.
A pesar de ser prácticamente imperceptibles, los neutrinos desempeñan un papel muy importante en los fenómenos cósmicos. Por ejemplo, el Sol brilla porque se producen en su centro reacciones nucleares por la fusión del hidrógeno. Esas reacciones generan luz y calor pero también neutrinos. De hecho, una fracción importante de la energía solar es emitida a manera de neutrinos; los que llegan a la Tierra atraviesan nuestro planeta a la velocidad de la luz y siguen su viaje por el espacio. Por nuestro cuerpo cruzan cada segundo alrededor de 100 billones de neutrinos provenientes del Sol sin que nos demos cuenta.
Si pudiéramos detectar los neutrinos solares, "veríamos" el centro mismo de Sol. Pero ¿cómo capturar tan elusivas partículas? La única posibilidad es un detector lo suficientemente grande para garantizar que unos cuantos neutrinos, en un flujo de billones y billones, sean absorbidos y detectados (algo análogo a comprar un gran número de boletos de la lotería para asegurarse de sacar alguna vez un premio mayor).
En 1973 empezó a funcionar el primer detector de neutrinos solares, que consistía en 600 toneladas de cloro sumergidas en una vieja mina de oro en Dakota del Sur. Cuando ocasionalmente un neutrino era absorbido por un átomo de cloro, éste se transformaba en argón radiactivo; midiendo la cantidad de argón producido se determina cuántos neutrinos han sido capturados. Y, efectivamente, se logró detectar del orden de una docena de neutrinos al mes. Por una parte, el experimento fue todo un éxito y sus resultados han sido confirmados posteriormente, pero, por otra parte, planteó nuevos problemas, ya que los cálculos teóricos predecían aproximadamente el triple de neutrinos capturados. Este es un problema que todavía no está resuelto de manera definitiva.
Además de los neutrinos solares, es muy probable que el espacio cósmico esté lleno de neutrinos cuyos orígenes se deben buscar en los primeros instantes del Universo. Los físicos han calculado que, junto con la materia común, una gran cantidad de neutrinos debió crearse pocos instantes después de la Gran Explosión, y que estos todavía llenan el Universo; así, nos movemos en un mar de unos 300 neutrinos de origen cósmico por centímetro cúbico. Desgraciadamente, estos neutrinos son muchísimo más difíciles de detectar que los de origen solar, aunque es posible que en el futuro puedan ser observados, con lo cual podríamos echar un "vistazo" a los primeros segundos de existencia del Universo.
Aunque los neutrinos parecen no poseer masa, esto está aún por confirmarse. En 1981 un grupo de científicos rusos anunció haber medido una pequeñísima masa, equivalente a menos de una diezmilésima parte de la masa del electrón. Esto causó gran revuelo en la comunidad científica porque las implicaciones de un neutrino masivo, son muy importantes para la evolución del Universo. En efecto, habiendo tantos neutrinos, la mayor parte de la masa del Universo correspondería a estas partículas y no a la materia común. A su vez, esa masa sería tan grande que determinaría la evolución del Universo. Volveremos a este tema en el capítulo VII, pero por el momento aclaremos que, como se descubrió posteriormente, el resultado del grupo ruso resultó ser una falsa alarma. Sin embargo, no está del todo excluido que el neutrino tenga una pequeñísima masa y que ésta sea medida algún día.
Por último, hay que señalar que un neutrino también tiene una antipartícula que es el antineutrino. Para ser precisos, un antineutrino es el que se emite en el decaimiento del neutrón. A pesar de que los neutrinos no poseen carga eléctrica, sí es posible distinguir un neutrino de un antineutrino, como veremos en el capítulo IV.

¿LA 5ta FUERZA FUNDAMENTAL DE LA NATURALEZA?

Partícula X17: qué es la quinta fuerza que dicen haber descubierto científicos húngaros

Átomo.
Una nueva partícula bautizada como X17 sería la evidencia de existencia 
de una quinta fuerza de la naturaleza.





Desde hace décadas la comunidad científica ha reconocido la existencia  de cuatro interacciones fundamentales que controlan el Universo: el electromagnetismo, la gravedad, la fuerza nuclear débil y la nuclear fuerte.

Pero ahora un estudio húngaro asegura haber observado una quinta fuerza de la naturaleza, un hecho que podría revolucionar nuestra comprensión del funcionamiento del mundo.

El análisis fue llevado a cabo por científicos del Instituto de Investigación Nuclear de la Academia de Ciencias de Hungría (Atomki), quienes estudiaron el comportamiento de un átomo de helio excitado y cómo emite luz a medida que se descompone.

Se dice que un átomo se encuentra en estado excitado cuando alguno de sus electrones, gozando de una mayor energía, salta de la órbita que ocupaba en estado fundamental a una órbita exterior, más alejada del núcleo.

Durante el experimento, el equipo liderado por Attila Krasznahorkay notó que las partículas del átomo se dividieron en ángulos de 115 grados, mucho más de lo previsto.

Se cree que en el momento en que el átomo se desintegra, el exceso de energía producido crea brevemente una nueva partícula desconocida, que rápidamente se descompone en positrones y electrones.


La Vía Láctea
De comprobarse, este nuevo hallazgo podría ayudar a entender mejor
 el funcionamiento del Universo.



Se trata de un fenómeno que no puede ser explicado bajo el modelo actual estándar de la física de partículas, una teoría relativista que describe la estructura fundamental de la materia y el vacío, tomando en cuenta las partículas elementales.

Calificado como un "bosón X protofóbico", debido a que le tendría "miedo a los protones", se cree que esta nueva partícula, bautizada como X17, es capaz de transportar fuerzas que actúan a distancias diminutas y sería una evidencia de la existencia de una quinta fuerza de la Naturaleza.

33 veces más masa que un electrón

Según el equipo de Krasznahorkay, que publicó su análisis en el sitio Arxiv de la Universidad de Cornell, esta partícula desconocida tendría una masa de alrededor de 17 megaelectronvoltios, lo que es aproximadamente 33 veces más que la que tiene un electrón, y de allí proviene su nombre.

Los hallazgos del Instituto Atomki se producen tres años después de que publicaran uno similar producto de un experimento realizado con la descomposición de un átomo de berilio-8, durante la cual se observó una anomalía.

Según la ley de conservación de la energía, a medida que aumenta la energía de la luz que produce el berilio cuando libera un electrón y un positrón, el ángulo entre ambos debería disminuir.

Pero esto no fue lo que sucedió en el experimento de 2016. De hecho hubo un aumento inesperado en la cantidad de electrones y positrones que se alejaban el uno del otro en un ángulo de 140 grados, mucho más de lo esperado. Una irregularidad que habría sido causada por la partícula X17.

Ilustración de la Vía Láctea

La partícula X17 podría ser el vínculo entre el mundo visible y la materia

 oscura, según los investigadores.

Un posible vínculo entre el mundo visible y la materia oscura

El equipo de Krasznahorkay considera que este nuevo experimento arrojó resultados similares a la "anomalía" observada cuando se analizó el berilio-8, que parece seguir el "escenario de descomposición del bosón X17", se lee en el estudio.

Los científicos húngaros creen además que la partícula podría ser el vínculo entre el mundo visible y la materia oscura.

La materia oscura es una entidad invisible pero crítica que conforma alrededor de un cuarto de toda la materia en el universo, pero cuya existencia solo se ha inferido hasta ahora.

Si la partícula X17 existe realmente y no se trata de un error, como creen algunos científicos, podría ayudar a resolver este misterio que ha persistido durante décadas.

Se espera que se realicen estudios "experimentales independientes" sobre la partícula X17 en los próximos años.


HISTORIA DE LA FISICA

Se dice que la Física nace junto con el hombre primitivo o el hombre de las cavernas, cuando  involuntariamente por temor quizás se preguntaba por que la noche, por que el día, por que el rayo, por que la lluvia, entre otras cosas.









La historia de la física abarca los esfuerzos realizados por las personas que han tratado de entender el porqué de la naturaleza y los fenómenos que en ella se observan: el paso de las estaciones, el movimiento de los cuerpos y de los astros, los fenómenos climáticos, las propiedades de los materiales, entre otros. Gracias a su vasto alcance y a su extensa historia, la física es clasificada como una ciencia fundamental. Esta disciplina científica se puede dedicar a describir las partículas más pequeñas o a explicar cómo nace una estrella.

Oscurantismo (Edad Media).


La mayoría de las civilizaciones de la antigüedad trataron desde un principio de explicar el funcionamiento de su entorno; miraban las estrellas y pensaban cómo ellas podían regir su mundo. Esto llevó a muchas interpretaciones de carácter más filosófico que físico; no en vano en esos momentos a la física se le llamaba filosofía natural. Muchos filósofos se encuentran en el desarrollo primitivo de la física, como AristótelesTales de Mileto o Demócrito, ya que fueron los primeros en tratar de buscar algún tipo de explicación a los fenómenos que les rodeaban.1​ Las primeras explicaciones que aparecieron en la antigüedad se basaban en consideraciones puramente filosóficas, sin verificarse experimentalmente. Algunas interpretaciones equivocadas, como la hecha por Claudio Ptolomeo en su famoso Almagesto —«La Tierra está en el centro del Universo y alrededor de ella giran los astros»— perduraron durante miles de años. A pesar de que las teorías descriptivas del universo que dejaron estos pensadores eran erradas en sus conclusiones, estas tuvieron validez por mucho tiempo, casi dos mil años, en parte por la aceptación de la Iglesia católica de varios de sus preceptos, como la teoría geocéntrica.(Wikipedia)


Después de Coopernico.


El oscurantismo  termina cuando el canónigo y científico Nicolás Copérnico, quien es considerado padre de la astronomía moderna, recibe en 1543 la primera copia de su libro, titulado De Revolutionibus Orbium Coelestium. A pesar de que Copérnico fue el primero en formular teorías plausibles, es otro personaje al cual se le considera el padre de la física como la conocemos ahora. Un catedrático de matemáticas de la Universidad de Pisa a finales del siglo XVI cambiaría la historia de la ciencia, empleando por primera vez experimentos para comprobar sus afirmaciones: Galileo Galilei. Mediante el uso del telescopio para observar el firmamento y sus trabajos en planos inclinados, Galileo empleó por primera vez el método científico y llegó a conclusiones capaces de ser verificadas. A sus trabajos se les unieron grandes contribuciones por parte de otros científicos como Johannes KeplerBlaise Pascal y Christian Huygens.2

Posteriormente, en el siglo XVII, un científico inglés reunió las ideas de Galileo y Kepler en un solo trabajo, unifica las ideas del movimiento celeste y las de los movimientos en la Tierra en lo que él llamó gravedad. En 1687, Isaac Newton formuló, en su obra titulada Philosophiae Naturalis Principia Mathematica, los tres principios del movimiento y una cuarta ley de la gravitación universal, que transformaron por completo el mundo físico; todos los fenómenos podían ser vistos de una manera mecánica.(Wikipedia).

Dios no juega a los dados con el Universo.
Einstein, deje de decirle a Dios lo que tiene que hacer con sus dados.

El trabajo de Newton en este campo perdura hasta la actualidad, ya que todos los fenómenos macroscópicos pueden ser descritos de acuerdo a sus tres leyes. Por eso durante el resto de ese siglo y en el posterior, el siglo XVIII, todas las investigaciones se basaron en sus ideas. De ahí que se desarrollaron otras disciplinas como la termodinámica, la óptica, la mecánica de fluidos y la mecánica estadística. Los conocidos trabajos de Daniel BernoulliRobert Boyle y Robert Hooke, entre otros, pertenecen a esta época.(Wikipedia).


Siglo XX.



En el siglo XIX se produjeron avances fundamentales en la electricidad y el magnetismo, principalmente de la mano de Charles-Augustin de CoulombLuigi GalvaniMichael Faraday y Georg Simon Ohm, que culminaron en el trabajo de James Clerk Maxwell en 1855, que logró la unificación de ambas ramas en el llamado electromagnetismo. Además, se producen los primeros descubrimientos sobre radiactividad y el descubrimiento del electrón por parte de Joseph John Thomson en 1897.5

Durante el siglo XX, la física se desarrolló plenamente. En 1904, Hantarō Nagaoka había propuesto el primer modelo del átomo,6​ el cual fue confirmado en parte por Ernest Rutherford en 1911, aunque ambos planteamientos serían después sustituidos por el modelo atómico de Bohr, de 1913. En 1905, Einstein formuló la teoría de la relatividad especial, la cual coincide con las leyes de Newton al decir que los fenómenos se desarrollan a velocidades pequeñas comparadas con la velocidad de la luz. En 1915 extendió la teoría de la relatividad especial, formulando la teoría de la relatividad general, la cual sustituye a la ley de gravitación de Newton y la comprende en los casos de masas pequeñas. Max PlanckAlbert EinsteinNiels Bohr y otros, desarrollaron la teoría cuántica, a fin de explicar resultados experimentales anómalos sobre la radiación de los cuerpos. En 1911, Ernest Rutherford dedujo la existencia de un núcleo atómico cargado positivamente, a partir de experiencias de dispersión de partículas. En 1925 Werner Heisenberg, y en 1926 Erwin Schrödinger y Paul Adrien Maurice Dirac, formularon la mecánica cuántica, la cual comprende las teorías cuánticas precedentes y suministra las herramientas teóricas para la Física de la materia condensada.7

Posteriormente se formuló la teoría cuántica de campos, para extender la mecánica cuántica de acuerdo con la Teoría de la Relatividad especial, alcanzando su forma moderna a finales de la década de 1940, gracias al trabajo de Richard FeynmanJulian SchwingerShin'ichirō Tomonaga y Freeman Dyson, los cuales formularon la teoría de la electrodinámica cuántica. Esta teoría formó la base para el desarrollo de la física de partículas. En 1954Chen Ning Yang y Robert Mills desarrollaron las bases del modelo estándar. Este modelo se completó en los años 1970, y con él fue posible predecir las propiedades de partículas no observadas previamente, pero que fueron descubiertas sucesivamente, siendo la última de ellas el quark top.​

Los intentos de unificar las cuatro interacciones fundamentales han llevado a los físicos a nuevos campos impensables. Las dos teorías más aceptadas, la mecánica cuántica y la relatividad general, que son capaces de describir con gran exactitud el macro y el micromundo, parecen incompatibles cuando se las quiere ver desde un mismo punto de vista. Por eso se han formulado nuevas teorías, como la supergravedad o la teoría de cuerdas, donde se centran las investigaciones a inicios del siglo XXI. Esta ciencia no desarrolla únicamente teorías, también es una disciplina de experimentación. Sus hallazgos, por lo tanto, pueden ser comprobados a través de experimentos. Además, sus teorías permiten establecer previsiones sobre pruebas que se desarrollen en el futuro. (Wikipedia).




Esta es una linea del tiempo de la física.